MATH2040 Linear Algebra II

Tutorial 11

December 1, 2016

1 **Examples:**

Recall(Dot diagram): For each eigenvalue λ_i , let β_i be the basis of K_{λ_i} , then $\beta_i = \gamma_1 \cup \gamma_2 \cup \cdots \cup \gamma_{n_i}$ is a disjoint union of cycles of generalized eigenvectors with $p_1 \ge p_2 \ge \cdots \ge p_{n_i}$, where p_j be the length of γ_j . Then, the dot diagram corresponding to λ_i has the following properties:

- 1. Number of columns in the dot diagram determines number of cycles in β_i
- 2. Number of dots in the *j*-th column determines number of element in γ_j
- 3. Since the cycles are arranged in descending order of length, so the number of dots in each column is nonincreasing from left to right
- 4. Number of dots in the first r rows equals nullity $((T \lambda_i I)^r)$
- 5. The total number of dots equal to $\dim(K_{\lambda_i}) = m_i$, which is the multiplicity of λ_i

Using these properties, we can find the dot diagrams systematically and can determine the structure of the Jordan canonical form J easily.

Example 1

Let V be the vector space of polynomial functions in two real variables x and y of degree at most 2, and T is the linear operator on V defined by

$$T(f(x,y)) = \frac{\partial}{\partial x}f(x,y) + \frac{\partial}{\partial y}f(x,y) \quad \forall f(x,y) \in V.$$

Find a Jordan canonical form J of T and a Jordan canonical basis β for T.

Solution

,

so the characteristic polynomial of A is $f(t) = t^6$. Then, there is only one eigenvalue

$$\lambda = 0$$
 with $m = 6$.

$$\begin{array}{ccc} \bullet (A - \lambda I)^2 v_1 & \bullet (A - \lambda I) v_2 & \bullet v_3 \\ \bullet (A - \lambda I) v_1 & \bullet v_2 \\ \bullet v_1 \end{array}$$

As the basis of K_{λ} consists of the vectors listed in the dot diagram, so we need to find end vectors v_1, v_2, v_3 such that the six vectors in the above dot diagram is non-zero and linearly independent.

Note,

and

$$N((A - \lambda I)^3) = N(0) = \operatorname{span} \{e_1, e_2, e_3, e_4, e_5, e_6\}$$

By the definition of cycles, we have to choose $v_1 \in N((T - \lambda I)^3)$ but $v_1 \notin N((T - \lambda I)^2)$ and $v_1 \notin N(T - \lambda I)$. Similarly, $v_2 \in N((T - \lambda I)^2)$ but $v_2 \notin N(T - \lambda I)$, and $v_3 \in N(T - \lambda I)$. Therefore, we can choose

$$v_{1} = \begin{pmatrix} 0\\0\\0\\0\\1 \end{pmatrix}, \text{ then } (A - \lambda I)v_{1} = \begin{pmatrix} 0\\1\\1\\0\\0\\0 \end{pmatrix}, (A - \lambda I)^{2}v_{1} = \begin{pmatrix} 2\\0\\0\\0\\0\\0 \end{pmatrix}$$

and

$$v_{2} = \begin{pmatrix} 0 \\ 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}, v_{3} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \\ -1 \\ 2 \end{pmatrix}, \text{ then } (A - \lambda I)v_{2} = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Finally, we can conclude that $J = Q^{-1}AQ$, where

and $\beta = \{2, x + y, xy, -x + y, -x^2 + xy, -x^2 - y^2 + 2xy\}.$

Example 2

Let T be a linear operator on a vector space V, and let $\gamma = \{(T - \lambda I)^{p-1}(x), (T - \lambda I)^{p-2}(x), \dots, x\}$ be a cycle of generalized eigenvectors that corresponds to the eigenvalue λ . Prove that span (γ) is a T-invariant subspace of V.

Solution

Denote $W = \operatorname{span}(\gamma)$. We need to show that W is a subspace of V, and W is T-invariant. To show W is a subspace of V is simple. Note,

1. $0 \in W$.

2. (closed under addition) For any $v, w \in W$, we can write $v = \sum_{i=1}^{p} a_i (T - \lambda I)^{p-i}(x)$ and $w = \sum_{i=1}^{p} b_i (T - \lambda I)^{p-i}(x)$. Then,

$$v + w = \sum_{i=1}^{p} a_i (T - \lambda I)^{p-i} (x) + \sum_{i=1}^{p} b_i (T - \lambda I)^{p-i} (x) = \sum_{i=1}^{p} (a_i + b_i) (T - \lambda I)^{p-i} (x) \in W.$$

3. (closed under scalar multiplication) For any $v \in W$, for any $c \in \mathbb{F}$,

$$cv = \sum_{i=1}^{p} ca_i (T - \lambda I)^{p-i} (x) \in W.$$

Before we show W is T-invariant, we first observe that W is $(T - \lambda I)$ -invariant by the definition of a cycle. So, for any $v \in W$,

$$T(v) = (T - \lambda I)(v) + \lambda I(v) = (T - \lambda I)(v) + \lambda v \in W.$$

2 Exercises:

Question 1 (Section 7.2 Q5(d)):

Let T be a linear operator on $M_{2\times 2}(\mathbb{R})$ defined by $T(A) = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix} A - A^T$ for any $A \in M_{2\times 2}(\mathbb{R})$. Find a Jordan canonical form J of T and a Jordan canonical basis β for T.

Question 2 (Section 7.2 Q7):

Let A be an $n \times n$ matrix whose characteristic polynomial splits and has k eigenvalues, γ be a cycle of generalized eigenvectors corresponding to an eigenvalue λ , and W be the subspace spanned by γ . Define γ' to be the ordered set obtained from γ by reversing the order of the vectors in γ .

- (a) Let $T = L_A$. Prove that $[T_W]_{\gamma'} = ([T_W]_{\gamma})^T$.
- (b) Let J be the Jordan canonical form of A. Use (a) to prove that J and J^T are similar.
- (c) Use (b) to prove that A and A^T are similar.

Solution

(For Question 1, please refer to Practice Problem Set 11.)

Question 2

(a) We denote $\gamma = \{v_1, v_2, \dots, v_p\}$ where $v_i = (A - \lambda I)^{p-i}(x)$ and x is the end vector. Then, $\gamma' = \{w_1, w_2, \dots, w_p\}$ where $w_i = v_{p-i+1}$. Note,

$$(T - \lambda I)(v_1) = 0 \Rightarrow T(v_1) = \lambda v_1$$

$$(T - \lambda I)(v_2) = v_1 \Rightarrow T(v_2) = v_1 + \lambda v_2$$

$$\vdots$$

$$(T - \lambda I)(v_p) = v_{p-1} \Rightarrow T(v_p) = v_{p-1} + \lambda v_p$$

So,
$$[T_W]_{\gamma} = \begin{pmatrix} \lambda & 1 & & \\ & \lambda & 1 & & \\ & & \lambda & & \\ & & \ddots & 1 \\ & & & & \lambda \end{pmatrix}$$
. Similarly,

$$(T - \lambda I)(w_1) = w_2 \Rightarrow T(w_1) = w_2 + \lambda w_1$$

$$(T - \lambda I)(w_2) = w_3 \Rightarrow T(w_2) = w_3 + \lambda w_2$$

$$\vdots$$

$$(T - \lambda I)(w_p) = 0 \Rightarrow T(w_p) = \lambda w_p$$
Therefore, $[T_W]_{\gamma'} = \begin{pmatrix} \lambda & & \\ 1 & \lambda & & \\ & 1 & \lambda & \\ & & & \ddots & \\ & & & & 1 & \lambda \end{pmatrix} = ([T_W]_{\gamma})^T.$

- (b) Since J is the Jordan canonical form of A, so there exists an invertible matrix $Q = (q_1, q_2, \ldots, q_n)$ such that $J = Q^{-1}AQ$. Form the result of (a), $J^T = P^{-1}AP$ where $P = (\gamma'_1, \gamma'_2, \ldots, \gamma'_k)$ and γ_i is the set of generalized eigenvectors of λ_i . Therefore, J^T and J are similar.
- (c) Since J is the Jordan canonical form of A, so J and A are similar. By (b), we have J and J^T are similar. Finally, J and A are similar implies J^T and A^T are similar. Therefore, A^T and A are similar.