MATH2040 Linear Algebra II

Tutorial 11

December 1, 2016

1 Examples:

Recall(Dot diagram): For each eigenvalue λ_{i}, let β_{i} be the basis of $K_{\lambda_{i}}$, then $\beta_{i}=\gamma_{1} \cup \gamma_{2} \cup \cdots \cup \gamma_{n_{i}}$ is a disjoint union of cycles of generalized eigenvectors with $p_{1} \geq p_{2} \geq \cdots \geq p_{n_{i}}$, where p_{j} be the length of γ_{j}. Then, the dot diagram corresponding to λ_{i} has the following properties:

1. Number of columns in the dot diagram determines number of cycles in β_{i}
2. Number of dots in the j-th column determines number of element in γ_{j}
3. Since the cycles are arranged in descending order of length, so the number of dots in each column is nonincreasing from left to right
4. Number of dots in the first r rows equals nullity $\left(\left(T-\lambda_{i} I\right)^{r}\right)$
5. The total number of dots equal to $\operatorname{dim}\left(K_{\lambda_{i}}\right)=m_{i}$, which is the multiplicity of λ_{i}

Using these properties, we can find the dot diagrams systematically and can determine the structure of the Jordan canonical form J easily.

Example 1

Let V be the vector space of polynomial functions in two real variables x and y of degree at most 2 , and T is the linear operator on V defined by

$$
T(f(x, y))=\frac{\partial}{\partial x} f(x, y)+\frac{\partial}{\partial y} f(x, y) \quad \forall f(x, y) \in V
$$

Find a Jordan canonical form J of T and a Jordan canonical basis β for T.

Solution

$$
\text { Let } \alpha=\left\{1, x, y, x^{2}, y^{2}, x y\right\} \text {. Then we denote } A=[T]_{\alpha}=\left(\begin{array}{cccccc}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 1 \\
0 & 0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \text {. Since } A \text { is upper triangular, }
$$

so the characteristic polynomial of A is $f(t)=t^{6}$. Then, there is only one eigenvalue

$$
\lambda=0 \quad \text { with } \quad m=6
$$

Note, $\operatorname{dim}\left(E_{\lambda}\right)=6-\operatorname{rank}(A-\lambda I)=3$. Therefore, the number of columns in the dot diagram is 3 . Moreover, as $(A-\lambda I)^{2}=\left(\begin{array}{cccccc}0 & 0 & 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$, so nullity $\left((A-\lambda I)^{2}\right)=5$. Therefore, the resulting dot diagram for $\lambda=0$ is

$$
\begin{array}{lll}
\bullet(A-\lambda I)^{2} v_{1} & \bullet(A-\lambda I) v_{2} & \bullet v_{3} \\
\bullet(A-\lambda I) v_{1} & \bullet v_{2} & \\
\bullet v_{1} & &
\end{array}
$$

As the basis of K_{λ} consists of the vectors listed in the dot diagram, so we need to find end vectors v_{1}, v_{2}, v_{3} such that the six vectors in the above dot diagram is non-zero and linearly independent.

Note,

$$
\left.\begin{array}{c}
N(A-\lambda I)=N\left(\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 1 \\
0 & 0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
-1 \\
2
\end{array}\right),\left(\begin{array}{c}
0 \\
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right)\right\}, \\
N\left((A-\lambda I)^{2}\right)=N\left(\begin{array}{llllll}
0 & 0 & 0 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
-1 \\
1
\end{array}\right)\right.
\end{array}\right\}
$$

and

$$
N\left((A-\lambda I)^{3}\right)=N(0)=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}
$$

By the definition of cycles, we have to choose $v_{1} \in N\left((T-\lambda I)^{3}\right)$ but $v_{1} \notin N\left((T-\lambda I)^{2}\right)$ and $v_{1} \notin N(T-\lambda I)$. Similarly, $v_{2} \in N\left((T-\lambda I)^{2}\right)$ but $v_{2} \notin N(T-\lambda I)$, and $v_{3} \in N(T-\lambda I)$. Therefore, we can choose

$$
v_{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right), \quad \text { then } \quad(A-\lambda I) v_{1}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right),(A-\lambda I)^{2} v_{1}=\left(\begin{array}{l}
2 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

and

$$
v_{2}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
0 \\
1
\end{array}\right), v_{3}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
-1 \\
2
\end{array}\right), \quad \text { then } \quad(A-\lambda I) v_{2}=\left(\begin{array}{c}
0 \\
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

Finally, we can conclude that $J=Q^{-1} A Q$, where

$$
J=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \text { and } \quad Q=\left(\begin{array}{cccccc}
2 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 1 & 2
\end{array}\right)
$$

and $\beta=\left\{2, x+y, x y,-x+y,-x^{2}+x y,-x^{2}-y^{2}+2 x y\right\}$.

Example 2

Let T be a linear operator on a vector space V, and let $\gamma=\left\{(T-\lambda I)^{p-1}(x),(T-\lambda I)^{p-2}(x), \ldots, x\right\}$ be a cycle of generalized eigenvectors that corresponds to the eigenvalue λ. Prove that $\operatorname{span}(\gamma)$ is a T-invariant subspace of V.

Solution

Denote $W=\operatorname{span}(\gamma)$. We need to show that W is a subspace of V, and W is T-invariant. To show W is a subspace of V is simple. Note,

1. $0 \in W$.
2. (closed under addition) For any $v, w \in W$, we can write $v=\sum_{i=1}^{p} a_{i}(T-\lambda I)^{p-i}(x)$ and $w=\sum_{i=1}^{p} b_{i}(T-\lambda I)^{p-i}(x)$. Then,

$$
v+w=\sum_{i=1}^{p} a_{i}(T-\lambda I)^{p-i}(x)+\sum_{i=1}^{p} b_{i}(T-\lambda I)^{p-i}(x)=\sum_{i=1}^{p}\left(a_{i}+b_{i}\right)(T-\lambda I)^{p-i}(x) \in W .
$$

3. (closed under scalar multiplication) For any $v \in W$, for any $c \in \mathbb{F}$,

$$
c v=\sum_{i=1}^{p} c a_{i}(T-\lambda I)^{p-i}(x) \in W
$$

Before we show W is T-invariant, we first observe that W is $(T-\lambda I)$-invariant by the definition of a cycle. So, for any $v \in W$,

$$
T(v)=(T-\lambda I)(v)+\lambda I(v)=(T-\lambda I)(v)+\lambda v \in W
$$

2 Exercises:

Question 1 (Section 7.2 Q5(d)):
Let T be a linear operator on $M_{2 \times 2}(\mathbb{R})$ defined by $T(A)=\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right) A-A^{T}$ for any $A \in M_{2 \times 2}(\mathbb{R})$. Find a Jordan canonical form J of T and a Jordan canonical basis β for T.

Question 2 (Section 7.2 Q7):
Let A be an $n \times n$ matrix whose characteristic polynomial splits and has k eigenvalues, γ be a cycle of generalized eigenvectors corresponding to an eigenvalue λ, and W be the subspace spanned by γ. Define γ^{\prime} to be the ordered set obtained from γ by reversing the order of the vectors in γ.
(a) Let $T=L_{A}$. Prove that $\left[T_{W}\right]_{\gamma^{\prime}}=\left(\left[T_{W}\right]_{\gamma}\right)^{T}$.
(b) Let J be the Jordan canonical form of A. Use (a) to prove that J and J^{T} are similar.
(c) Use (b) to prove that A and A^{T} are similar.

Solution

(For Question 1, please refer to Practice Problem Set 11.)

Question 2

(a) We denote $\gamma=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ where $v_{i}=(A-\lambda I)^{p-i}(x)$ and x is the end vector. Then, $\gamma^{\prime}=\left\{w_{1}, w_{2}, \ldots, w_{p}\right\}$ where $w_{i}=v_{p-i+1}$. Note,

$$
\begin{gathered}
(T-\lambda I)\left(v_{1}\right)=0 \Rightarrow T\left(v_{1}\right)=\lambda v_{1} \\
(T-\lambda I)\left(v_{2}\right)=v_{1} \Rightarrow T\left(v_{2}\right)=v_{1}+\lambda v_{2} \\
\vdots \\
(T-\lambda I)\left(v_{p}\right)=v_{p-1} \Rightarrow T\left(v_{p}\right)=v_{p-1}+\lambda v_{p}
\end{gathered}
$$

So, $\left[T_{W}\right]_{\gamma}=\left(\begin{array}{ccccc}\lambda & 1 & & & \\ & \lambda & 1 & & \\ & & \lambda & & \\ & & & \ddots & 1 \\ & & & & \lambda\end{array}\right)$. Similarly,

$$
\begin{aligned}
& (T-\lambda I)\left(w_{1}\right)=w_{2} \Rightarrow T\left(w_{1}\right)=w_{2}+\lambda w_{1} \\
& (T-\lambda I)\left(w_{2}\right)=w_{3} \Rightarrow T\left(w_{2}\right)=w_{3}+\lambda w_{2}
\end{aligned}
$$

$$
(T-\lambda I)\left(w_{p}\right)=0 \Rightarrow T\left(w_{p}\right)=\lambda w_{p}
$$

Therefore, $\left[T_{W}\right]_{\gamma^{\prime}}=\left(\begin{array}{ccccc}\lambda & & & & \\ 1 & \lambda & & & \\ & 1 & \lambda & & \\ & & & \ddots & \\ & & & 1 & \lambda\end{array}\right)=\left(\left[T_{W}\right]_{\gamma}\right)^{T}$.
(b) Since J is the Jordan canonical form of A, so there exists an invertible matrix $Q=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ such that $J=Q^{-1} A Q$. Form the result of (a), $J^{T}=P^{-1} A P$ where $P=\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}, \ldots, \gamma_{k}^{\prime}\right)$ and γ_{i} is the set of generalized eigenvectors of λ_{i}. Therefore, J^{T} and J are similar.
(c) Since J is the Jordan canonical form of A, so J and A are similar. By (b), we have J and J^{T} are similar. Finally, J and A are similar implies J^{T} and A^{T} are similar. Therefore, A^{T} and A are similar.

